Basin analysis of the Mesoproterozoic Bushmanland group of the Namaqua Metamorphic Province, South Africa

DSpace/Manakin Repository

Show simple item record

dc.contributor.author McClung, Craig Randall
dc.date.accessioned 2008-06-12T05:35:38Z
dc.date.available 2008-06-12T05:35:38Z
dc.date.issued 2008-06-12T05:35:38Z
dc.identifier.uri http://hdl.handle.net/10210/610
dc.description.abstract The Mesoproterozoic Bushmanland Subprovince of northwestern South Africa forms the western continuation of the transcontinental Namaqua-Natal Metamorphic Province, a crustal domain affected by the 1020-1220 Ma Namaquan Orogeny. Cross-cut by several large faults, the Bushmanland Subprovince can be subdivided into a southern Garies Terrain and northern Aggeneys Terrain. The supracrustal rocks of the Aggeneys Terrain (i.e. Bushmanland Group), comprise a thin (<1 km thick) metavolcano-sedimentary succession composed of a very consistent, shallow marine duplex of sandstone-shale to chemogenic metasedimentary and metavolcanic rocks that have undergone multiple phases of deformation and metamorphism. Since the discovery of the Broken Hill-type (BHT) mineralization in the Aggeneys-Gamsberg district (~440 Mt, 5.2% Cu+Zn+Pb) in the early 1970’s, controversy has persisted regarding the stratigraphy of the Bushmanland Group, its lateral correlation throughout the Aggeneys Terrain, environment and age of deposition, as well as classification and origin of its base-metal sulfide ± barite deposits. For these reasons, the present study primarily focuses on two aims, namely: (1) regionally based comprehensive lithostratigraphic, geochemical and geochronologic analysis of the Bushmanland Group to be used in the construction of a basin model; and (2) petrographic and geochemical analyses of Fe-Mn-rich rocks and barites to determine if they are related to base-metal mineralization and if so, to what extent. New lithostratigraphic data for the Bushmanland Group indicate that it can be subdivided into two subgroups and thirteen formations that are directly correlatable throughout the terrain as well as similar supracrustal successions in neighboring portions of the Namaqua Metamorphic Province. The base of the Bushmanland Group (Wortel Subgroup) comprises a thin (250-350 m thick) sequence of interbedded upward-coarsening psammo-pelitic schists and mature quartzite (i.e. meta-orthoquartzites) of the Namies Schist Fm., Pella Quartzite Fm., Bloemhoek Fm. and laterally equivalent Kangnas Fm. In contrast, the metasedimentary rocks of the unconformably overlying Kouboom Subgroup can be separated into facies terrains divided by the Pofadder-Tantalite Valley Shear Zone (PTV Shear Zone). West of the PTV Shear Zone the Kouboom Subgroup is characterized by a thin (205-225 m thick) succession of interbedded mature quartzites and pelitic schists. East of PTV Shear Zone the Kouboom Subgroup encompasses a thick (~1250 m thick) succession of calc-silicate rocks hosted by biotite to calc-silicate-rich schists and metagreywackes. The Koeris Fm., a variably thick (0-650 m) succession of psammitic schists, metaconglomerates and ortho-amphibolites unconformably overlies the Kouboom Subgroup. Geochemical provenance and detrital zircon core populations of the Wortel Subgroup suggest the metasedimentary rocks were derived from the Paleoproterozoic continental island arc rocks of the Vioolsdrift Intrusive Suite and Gladkop Suite, as well as an unidentified sedimentary/metasedimentary succession. Deposition took place in a passive continental margin environment between 1140 to 1650 Ma. In contrast, the unconformably overlying Kouboom Subgroup is characterized by larger plutonic derived zircons of the basement rocks to the Orange River Group, suggesting deposition in a tectonically active environment marked by repeated periods of tectonic uplift. In addition, new age constraints reveal that deposition in the upper part of the Kouboom Subgroup (possibly upper part of the Gams Fm.) was synchronous with emplacement of the Little Namaqualand Suite (~1190 Ma) into the lower portions, i.e. Wortel Subgroup, of the Bushmanland Group. The geochemical attributes and detrital zircon populations of metagreywackes from the Driekop Fm. suggest they were eroded from the newly exposed, i.e. fresh to poorly weathered, intrusions of the Little Namaqualand Suite, indicating a renewed period of tectonic uplift. Lastly, unlike the other lithologic units of the Bushmanland Group, the Koeris Fm. exhibits four detrital zircon age populations at 1125-1325, 1605-1695, 1730-1910 and 1935-2075 Ma. The older sub-populations indicate sediment derivation from various units of the Richtersveld Subprovince and Steinkopf Domain, while the younger sub-populations suggest derivation from various units in the Rehoboth Inlier of Namibia and the Gordonia Terrain to the east. The provenance signature of the younger subpopulation implies that deposition of the Koeris Fm. occurred after continental collision between the Rehoboth Inlier-Kaapvaal Craton and the Namaqua Metamorphic Province. With regards to the base-metal deposits of the Aggeneys-Gamsberg district, petrographic and geochemical analysis of the Bushmanland Group Fe-Mn-rich rocks suggests that they can be subdivided into several types: (1) primary Fe-Mn-rich metasedimentary rocks; (2) magnetite-amphibole-rich Fe-Mn-rich rocks; (3) coticules; and (4) epigenetic Fe-Mn-rich rocks. Primary Fe-Mn-rich metasedimentary rocks occur throughout the western and central portions of the study area and appear to have been formed through the deposition of Fe-Mn-rich hydrogenous precipitates in areas of localized sediment starvation. However, as illustrated by the primary Fe-Mn-rich metasedimentary rocks of the Lemoenpoort prospect, a syn-diagenetic, hot (>250°C), metalliferous hydrothermal fluids infiltrated and altered these hydrogenous Fe-Mnrich metasedimentary rocks, resulting in the deposition of base-metal sulfides, formation of magnetite-amphibolite-rich Fe-Mn-rich rocks, as well as hydrothermal alteration of the siliciclastic wall rocks to form coticules. The spatial restriction of epigenetic Fe-Mn-rich rocks to shear zones, high Fe2O3 T (ca. 65 wt %), low ΣREE (ca. 13 ppm), presence of recrystallized quartz crystals, elevated concentration of Cu in some occurrences and general similarities with some hydrothermal iron/iron-oxide copper-gold (IOCG) deposits, suggests that the epigenetic Fe-Mn-rich rocks may have formed during prograde metamorphism. Low concentrations of SrO (0.5 ± 0.2 wt %), highly radiogenic Sr/ Sr ratios (0.7164 ± 0.0028), elevated δ S (27.3 ± 4.9 ‰) and δ O (7.7 ± 3.1 ‰) values in the barites, as compared to contemporaneous Mesoproterozoic seawater, suggests precipitation of stratiform and stratabound barite layers in the Bushmanland Group occurred through mixing of an evolved continental crustal source and contemporaneous seawater sulfate, 87 86 34 18 modified by bacterial sulfate reduction. Most importantly, δ O values suggest possible minimum temperatures of formation ranging from 18 <150°C for the Gamsberg deposit to >250°C for occurrences in the Aggeneys area. These obvious differences in temperature of formation are in good agreement with the Cu-rich, Ba-poor nature of the sulfide mineralization characteristic of the Aggeneys deposits versus the Cu-poor, Ba-rich character of the Gamsberg deposit. In conjunction with this, the isotopic and petrographic arguments favor a sub-seafloor replacement model for the stratabound barite occurrences of the Aggeneys deposits, while at Gamsberg, deposition at the sediment-water interface as a true sedimentary exhalite appears more acceptable. Data obtained in the present study, combined with the results of previous investigations can be used to develop a comprehensive model for the geological evolution of the Aggeneys Terrain and Namaqua Metamorphic Province. The tectono-sedimentary evolution of the Aggeneys Terrain and Namaqua Metamorphic Province is marked by two important tectonic events separated by an episode of tectonic quiescence. Extrusion and deposition of the metavolcano-sedimentary rocks of the Orange River Group at 1908 Ma marks the start of the Orange River Orogeny. vii Prior to emplacement of the Vioolsdrift Intrusive Suite, the Orange River Group appears to have undergone a period of folding and low-grade metamorphism [D1/M1] that was subsequently followed by emplacement of the Main Phase Vioolsdrift Intrusive Suite roughly dated at 1890 Ma. Rapidly following emplacement of these intrusions, the lower crustal rocks of the Richtersveld Subprovince underwent a second, higher, amphibolite-facies metamorphic event [M1B] from 1870-1840 Ma. This event may have resulted in lower crustal melting and emplacement of the Gladkop Suite into an unknown package of metasediments or metasedimentary rocks south of the present day Orange River at roughly 1820 Ma. The Gladkop Suite was subsequently subjected to high-grade metamorphism at 1800 Ma. The Orange River Orogeny was terminated by emplacement of the Late Phase Vioolsdrift Intrusive Suite at approximately 1765 Ma and later northward-directed thrusting. Following termination of the Orange River Orogeny, deposition of the Bushmanland Group began in a tectonically stable environment marked by punctuated periods of tectonic activity that lasted until emplacement of the Little Namaqualand Suite at 1190 Ma. The detrital zircon populations of the Pella Quartzite Fm. and Koeris Fm. support (a) regional correlation of these stratigraphic units throughout the study area, (b) confirms sediment derivation from various local source terrains and (c) suggests a maximum depositional age of 1650 Ma. Furthermore, new age constraints reveal initiation of the O’okiepian Episode (Namaquan Orogeny), characterized by regional-scale mid- to high-grade contact metamorphism, was synchronous with emplacement of the Little Namaqualand Suite and deposition of the upper Kouboom Subgroup. Furthermore, the detrital zircon populations for the Driekop Fm. (upper Kouboom Subgroup) contain a large population of 1190 Ma (i.e. O’okiepian-age) detrital cores, suggesting a renewed period of tectonic uplift. Analogously, age constraints for the Koeris Fm. indicate a maximum depositional age of 1130 Ma, as well as derivation from a number of local and exotic source terrains indicating that deposition of the Koeris Fm. must have occurred in response to continental collision between the Rehoboth Inlier-Kaapvaal Craton and the Namaqua Metamorphic Province. Furthermore, these new age constraints also constrain the timing of D2-D3 deformation to between 1130-1080 Ma and regional peak metamorphism to 1020- 1040 Ma. en
dc.description.sponsorship Prof. N.J. Beukes Prof. J. Gutzmer en
dc.language.iso en en
dc.subject Geology en
dc.subject Geochemistry en
dc.subject Namaqualand (South Africa) en
dc.title Basin analysis of the Mesoproterozoic Bushmanland group of the Namaqua Metamorphic Province, South Africa en
dc.type Thesis en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UJDigispace


Advanced Search

Browse

My Account